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A set function v (which is not necessarily additive) on a measurable space I is 
called orderable if for each measurable order ,.~ on I there is a measure (p~ v 
on I such that for all subsets J of I that are initial segments, (p~v (J) = v(J). 
Properties such as nonatomicity, nuUness of sets,and weak continuity arc shown 
to be inherited from orderable set functions v to 9~ ~ v and vice versa. A charac- 
terization of set functions which are absolutely continuous (with respect to 
some positive measure) in the set of orderable set functions is also given. 

Introduction 

A set funct ion v (not  necessari ly addit ive)  on  a measurable  space I is cal led 

orderable [1, Sect. 12] if, for  each measurable  o rder  ~ on I there  is a measure  

(pray on  I such tha t  for  all  subsets J o f  I tha t  are  ini t ial  segments  in the order  ~ ,  

we have 

(~o) ( J )  = ~ .  

To unders tand  o rderab i l i ty  intuit ively,  th ink  o f  I as consis t ing o f  an 

inhomogeneous  l iquid,  and  o f  v(S) as represent ing some measure  o f  the wor th  o f  a 

par t i cu la r  par t  S o f  I .  Th ink  o f  this l iquid as f lowing f rom one place to  another ,  
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the drops arriving in the order ~ .  As it arrives, each drop of the liquid contributes to 

(or detracts from) the worth of that portion of the liquid already at the destination. 

Intuitively, (q~av)(S) is the total increment contributed in this way by all the 

drops in a set S. Since v is in general not additive, ~ v  will depend strongly on ~ ;  

in fact, it may not even exist for all ~ .  Orderable v are those for which it does 

exist. 

The reader is referred to [1, Chapt. II] for an explanation of how this notion 

is motivated by game-theoretic considerations. 

It is the purpose of this paper to investigate the properties of the space ORD of 

orderable set functions. We establish in Sections 5 and 6 that for v E ORD, certain 

properties (such as nonatomicity and weak continuity, defined in Section 3), are 

inherited by cp~v from v. In Section 7 we show that a set function is absolutely 

continuous [1, Sect. 6] if and only if {q~} is weak sequentially compact in the 

space of all a-additive measures on I. 

1. Notational conventions 

Throughout the paper the symbol [] [[ for a norm is used in different senses 

but its meaning is clear each place where it is used. 

It is important to distinguish between functions and their values. For example, 

if # is a measure, then [i P II is its total variation, whereas II Ii is the absolute 

value of the number p(s). 

Composition will usually be denoted by o; thus if f is defined on the range of/t, 

then the function whose value on S isf(#(S)) will be denotedfo p. In the case of 

composition of linear operators, the symbol o will be omitted. 

The symbol c will be used for inclusion. Set theoretical subtraction will be 

denoted by /, whereas"-"  will be reserved for algebraic subtraction. V stands for 

symmetric set subtraction.f[ A means f restricted to A. A c means the complement 

of A in an appropriate space; if it is unclear which space is meant, we will clarify. 

A measure is an additive real-valued set function defined on a field which 

vanishes on ~ .  It will always be specified whether we mean a finitely additive or a 

~r-additive measure. A probability measure is a nonatomic, a-additive measure 

whose value on the entire space is 1. ]/~1 (S) means the total variation of/~ on S. 

When # is additive it is known that 1/~[ is additive too. See, for example, I'2, 

III-1-6, p. 981). 

The origin of a linear space will be denoted by 0. 
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Finally, if x, y 6 E ~ then x _~ y iff x~ _~ y~ for each 1 _< i ~ n. 

2. Basic definitions and conventions 

This section summarizes definitions, conventions, and results of [1] which we 

shall need. 

Let (I, ~)  be the measurable space consisting of the unit interval and the Borel 

subsets. (This is assumed for simplicity only. All the results remain true if (I, ~ is 

any countably generated and separated Borel space.) A set function is a real- 

valued function v on ~ such that v (~)  = 0. By a carrier of a set function v, we 

mean a set 1' such that v(S) = v(S h i ' )  for each S~C~. A set is null (or v-null) if 

it is the complement of a carrier. A set function is nonatomic if {s} is null for each 

s e I. (The definition of nonatomicity in this paper differs from the one appearing 

in [1]; however, it will be proved in [4] that for orderable set functions the two 

definitions coincide.) A set function is monotonic if S c T implies v(S) ~ v(T). The 

difference between two monotonic set functions is said to be of  bounded variation. 

The set of all set functions of bounded variation forms a linear space, which will 

be called B V. The linear subspace of BVconsisting of all bounded, finitely additive, 

set functions will be denoted FA. Note that # e FA is monotonic iff #(S)>___ 0 for 

all S in ~ .  The subspace of all nonatomic, a-additive, totally finite, signed measures 

will be denoted by NA.  The subspace of all a-additive, totally finite, signed 

imeasures on ( I ,~)  will be denoted by M. 

Let P be a subspace of BV. The set of all monotonic set functions in P is denoted 

P+. A mapping of  P into BV is called positive if it maps P+ into BV +. If P has no 

monotonic elements except 0, then every linear mapping is positive. 

Let J denote the group of automorphisms of (I ,~),  that is, the one-one 

functions from I onto I which are measurable in both directions. Each 0 in J 

induces a linear mapping 0, of BV onto itself, given by 

(2.1) (0,v) (S) = o(0S). 

A subspace P of BV is called symmetric if O~ = P for each 0 in f .  

The norm we shall use in BV is the variation norm, defined by 

Ilvll -- inf{u(I) + w(I)lu - w = v, where u and w are monotonic}. 

Unless otherwise stated the norm in BV will always be the variation norm; it is 

easily seen that it is indeed a norm. 

A chain is a non-decreasing sequence of  sets of  the form 
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J ~  = S o  c S 1 c . . .  t -  S n = Z 

A link of this chain is a pair of successive elements. A subchain is a set of links. 

A chain will be identified with the subchain consisting of all links. If  v is a set 

function and A is a subchain of a chain l), then the variation ofv  over A is defined 

by 

II vii^ -- z l  o(s , )-  o(s,_,) I, 

where the sum ranges over {i[{S,_ 1, Si} e A}. For a fixed A, II II  ̂is a pseudonorm 

on BV, that is, it enjoys all the properties of a norm except that II v II = 0 does not 

necessarily imply that v = 0. In [1, Prop. 4.1] it is proved that v E BV iff IIv II~ is 

bounded over all chains f~, and if v ~ BV then 

ilv II -- sup IIv il. 
f l  

Clearly convergence in the variation norm implies pointwise convergence. 

Let v E B V  and S eCg. Let v s denote the restriction of v to the measurable 

subsets of S. Denote 

Ivl(s) --I1:11. 
This coincides with the usual concept of the total variation of a measure. It is 

easily seen that 

l, 

Ivl (s) = sup x Iv(s,)-  o(s,_,)l 
t = l  

where the supremum is taken over all non-decreasing sequences 

= So c Sl ~ " "  c S~ = S. 

It is clear that the variation norm coincides with the usual norm for bounded, 

finitely additive measures (see [-2, 15, p. 140]). In [-I, Prop. 4.3], it is shown that 

B V is complete in the variation norm. It can be proved in straightforward fashion 

that NA,  M, and FA are closed in BV under the variation norm. 

3. Statement of chief results 

Absolute continuity of a set function with respect to another set function is 

defined in [1, Sect. 5] as follows. Let v and w be set functions; then v is absolutely 

continuous with respect to w (written v ~ w) if for every e > 0 there is a 6 > 0 such 

that for every chain fl and every subchain A of 
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II w I]^ --- ]Iv IÎ  
Note that the relation is transitive, and that if v and w are measures, it coincides 

with the usual notion of  absolute continuity. 

A set function is said to be absolutely continuous if there is a measure # e NA + 

such that v ,~ 9. The set of  all absolutely continuous set functions in BV is denoted 

AC. AC is a closed linear subspace of  BV ([1, Prop. 5.21). 

A weaker concept of continuity was introduced in [1, Proof  of  (44.27)1. Now we 

are going to define an even weaker concept of continuity. For  simplicity, we will 

only define this continuity with respect to members of FA. 

If v e BV and/~ ~ FA then v is said to be weakly continuous with respect to i~ 

(written v < p) if for any S, Te  cr 

(3.1) I.I (SVT) = o v(s) -- v(T). 

Note that v < / a  and p < r/where v e BV and/ t ,  t/E FA + implies v < ~/. 

A set function is said to be weakly continuous if there is a measure # ~ NA + such 

that v < #. The set of all weakly continuous set functions in BV is denoted WC. 

Measurable orders were introduced in [1, Sect. 12], for the purpose of  trying 

to establish a notion of a value (in the game theoretic sense) based on random 

orders. 

Intuitively, each order has a direction. (An order on I is a relation on I that is 

transitive, irreflexive and complete.) To emphasize this, orders are denoted 

x < y instead of the usual X~r the intuitive meaning being that x comes before 

y. The notation, x < y, x > y and x ~ y are used similarly. 

An initial segment is a set of the form I(s, ~ )  = {x I x < s} where s E I. A 

final segment is a set of the form E(s ,~)  = {xlx  >s}  where sEI .  An initial set 

is a set d which fulfills the condition s ~ J, s' ~ s :~ s' ~ J.  An ~-interval is a set of  
al 

the form [s, t)a, = {xl s < x < t} where s, t ~ 1. The entire space and the empty 

set are also considered as initial sets, and as such are denoted 1(o% :~) and I ( -  oo,~) 

respectively. It is understood that - oo < s < oo for each s ~ I and we denote 

{ -  oo} u I u {oo} by L (Formally we extend ~ to L This however is a notational 

device; we are not adding anything to the underlying space, and all set functions 

and measures continue to be defined only on subsets of I.) 
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Denote by F(~)  the a-field generated by all the initial segments. A measurable 

order is an order such that F(~)  = ~'. 

A set function v is called orderable [-1, Sect. 12] if for each measurable order 

there is a a-additive measure cpav such that for all initial segments l(s, ~), we have 

(3.2) (gomv) (I(s, ~)) = v(I(s, ~)). 

Since (3.2) determines (~oav) on all the initial segments, and since by the measurabi- 

lity of ~. the initial segments generate 5, it follows that there can be at most one 

measure ~0% satisfying (3.2). Thus for orderable set functions there is exactly 

one measure tp v satisfying (3.2). The set of all orerable set functions will be 

denoted ORD. 

We are now ready to state the main results of this paper. (Proofs of Theorems 

3.1, 3.2 and 3.3, and 3.4 and 3.4' are given respectively in Sections 5, 6, and 7.) 

TH~ORE~ 3.1. Let veORD. Then v is nonatomic if and only if for any 

measurable order ~,  q2 v is nonatomic. 

THEOREM 3.2. Let vEORD, I t eM +. Then v<i t  if and only if for any 

measurable order ~ ,  gomv < It. 

THEOREM 3.3. Let veORD, I t e M  + and v <It. Then A is v-null if and only 
if for any measurable order ~ ,  A is cp%-null. 

For v ~ ORD write Ko = {~p% I "~ is a m~.asurable or~t:r} an5 

THEOREM 3.4. Let v ~ ORD be nonatomic. Then v E AC if and only if Kv, (or 

equivalently, K'~) is weak sequentially compact. 

THEOREM 3.4[ Let v e ORD. Then there exists a measure ). such that v ,~ 2 i 

and only if Kv (or equivalently, K'o) is weak sequentially compact. 

4. Some auxiliary properties of weak continuity and orderability of set functions 

In this section we are going to investigate some properties of weak continuity 

and orderability of set functions. 

LEM~A 4.1. I f  veBV, I teFA then the following statements are equivalent: 

(i) v < It. 

(ii) I f S ,  T e ~  and S =  T, then IItl (s)  -- IItl (73 : ,  v(s  -- 
(iii) l f  S~Cg is It-null then S is v-null. 
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PROOF. 
(i) :~ (ii): this is immediate. 

(ii) :~ (iii): if S is #-null then for any T, I#l ( 'F)=I#I  (T \ (TnS ) ) ,  and (ii) 

now yields v(T) = v(T\ S). 

(iii) ~ (i): If  I#1 ( S V T ) = 0  then SVTis  #-null and therefore by (iii) v-null. Now 

v(S) = v(S\ (SVT)) = v(S ~ T) = v(T\(SVT)) = v(T). Q.E.D. 

REMARK. Let /~ be an n-dimensional, a-additive measure whose components 

#~ are in M +. L e t f  be a real-valued function on the range o f #  in E ~, with f (0)  = 0, 

and f o # �9 BV. Then v < 5" [ #, 1. 

PROPOSITION 4.2. WC is a closed linear symmetric subspace of BV. 

PROOF. WC is easily seen to be linear. By definition WC ~ BV. The symmetry 

follows immediately from 

v < # :~ ~ .v  < go.# for each automorphism r 

To prove WC is closed, let [I v , - u  II where v, < #, and #i �9 NA +. Without 

loss of generality assume #i(I) = 1 and set 

oo 

# = X (�89 
i = 1  

Note that # �9 NA +, and #~ < # for all i, hence vs < # for all i. 

Let S c T such that #(S)=#(T) .  Now for a given s > 0 let v~o be such that 

II V,o - v  II ---< v,o <. # we obtain 

Now 

v~o(S) = rio(T). 

Iv(T) - v(S)[ < ]v(T) - v,o(T) [ + [vfo(T ) - rio(S) [ + [(v,o(S ) - v(S)[ 

< 211 v 

was chosen arbitrarily, therefore v(T)= v(S). Hence v < # and v~ WC is 

proved. Q.E.D. 

If  ~b is an automorphism of (I,~Q, denote by ~b~ the order defined by 

~bx ~a ~' y iff x < a y" Obviously, ~b~ is measurable iff 9? is. 

PROPOSmON 4.3. 

(i) ORD is a closed linear symmetric subspace of BV. 
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(ii) For all measurable orders at, q~a is a bounded linear operator on ORD. 

Moreover I1~*11 = 1. 
(iii) ~pa(~b,v) = ~O,(~p*av). 

PROOF. Obviously ORD is a linear subspace and for all measurable orders at, 

q~m is linear on ORD. Let at be a measurable order and let ~b be an automorphism 

of (I, ff).  Then ~b,~p ~a v is a a-additive measure. Furthermore, 

and hence 

d/(I(s, at)) = I(~ks, d/at) 

(~,(q~*%))I(s, at)) = (r at))) 

= (~ ,*%Xl(r  r = K l ( r  r 

= v ( r  at)))  = (g / , v ) ( l ( s ,  at)) .  

Since (r is a a-additive measure satisfying (3.2) for r and at, it follows 

~o"(~,.v) exists and equals ~O.(g0*%). Hence r  E ORD. 

Next, let at be a measurable order. In [1, Prop. 12.8] it has been proved that 

II ~0"~ I1 - IIo II, which shows that II ~* II -~ 1. To see [I ~oa II ~ 1 let # be any 
probability measure on r = F(at), then clearly q}B# = # # 0. This shows 

I1~o"11 = 1. 
Finally we will prove that ORD is closed. Let at be a measurable order and let 

v, ---} v as n ~ oo, where v, E ORD for each n. Then 

II ~ ' o .  - ~ ' o .  II = II y ' ( o .  - o.)II -~ II (v. - v . ) I 1 . . - ~  -" o. 

Thus we see that ~o%. is a Cauchy sequence. As BV is complete in the variation 

norm [1, Sect. 4], it follows that go%, converges; we denote its limit by t/. The set 

of  a-additive measures is closed in BV, and therefore r/is a a-additive measure. 

Moreover, convergence in the variation norm clearly implies pointwise con- 

vergence, therefore for every s E I, 

q(l(s, at)) = lira (~o%,Xl(s, at)) = lira v,(I(s, at)) = v(l(s, at)). 
II-~ O0 I . .~  O0 

Hence ~ is a a-additive measure which fulfills (3.2). Hence v~ ORD has been 

proved. Q.E.D. 

COROLLARY 4.4. Let at be a measurable order. Then ~om is positive on ORD. 

PROOF. If P is a linear subspace of  BV and 9 a linear operator from P into 
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M r- BV obeying the normalization condition (q)a v) (I)=v(l) and I] cp II < 1, then 

~p is positive I1, Prop. 4.6]. This fact along with Proposition 4.3 complete the 

proof. Q.E.D. 

PROPOSITIOt~ 4.5. Let v~ BV such that there is a measure la for which v ~ lZ. 

Then v ~ ORD. 

PROOF. See [1, Prop. 12.8], and note that the nonatomicity of/z was actually 

not used. Q.E.D. 

5. Theorem 3.1 

We are going to need several auxiliary iemmas for the proof of Theorem 3.1. 

Let us first start with a definition. 

DEFINITION. A subset Q of I will be called A-dense if for all s, t s I such that 

s < t there is a member qEQ such that s < q < t. By [1, Lem. 12.5], there 
St ~t ~t 

exists a denumerable A-dense set for any measurable order ~ .  

LEMMA 5.1. Let ~ be a measurable order. Let A ~ .  Define an order ~* by 

f x s A ,  y e A a n d x  < y, or ~t 

x < y ~  x r 1 6 2  < y, or 

x(~A, y e A .  

(This means A is thrown beyond I /A and the order& is preserved on A and I /A.) 

Then ~* is measurable. 

PROOF. The direction F ( ~ * ) c  ~ is trivial. To prove the opposite we shall 

first show that there is a denumerable ~*-dense set. Let Q be an A-dense denumer- 

able set. ([1, Lem. 12.5] assures its existence.) Denote 

Bq = q e l I A "  

We have to substitute for q in Bq. If there is a minimal element in E(q, ~)  n B~ 

or a maximal element in I ( q , ~ ) n B q  then we might substitute it tbr q in B~. 

Otherwise we might find a sequence which approaches in Bq the place where q 

has been. Denote by Ia the element or the sequence which substitute for q in Bq, 

then Q' = (wq ~ QIq)u Q is a denumerable ~*-dense set. 

Let J be an &*-initial set; we shall show that J e F(~*). Denote 
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{~' = Q ' U i - o o } U ( o o } ,  J = J U { - o o }  a n d J  1 ~ , \  I(q,~*). 

J l  : J, and since Q' is ~*  dense, it follows that J t  \ J contains at most two points. 

Since the intersection defining J1 is denumerable it follows that J1 ~ F(~*) and 

this assures J ~ F(~*). 

Now clearly I ( x ,~ ) sF(~*)  for each x in I. This is sufficient to show 

(6 ~ F(~*) (recall ~ = F(~)).  Q.E.D. 

COROLLARY 5.2. Let A t , . . . ,A ,  be distinct, measurable sets whose union is I. 

Then there is a measurable order ~ such that 

(5.1) xeAi ,  ysA~,  and i < j = - x  < y. 
al 

PROOF. Start with the usual order on [0, 1] which is clearly measurable. Define 

an order which throws A1 beyond [0, 1]\Ax and preserves ~ on AI and I \ A  1. By 

repeating this for A2,".,A~ we get an order which satisfies (5.1). Q.E.D. 

COROLLARY 5.3. Let A t , ' " , A ,  be distinct measurable sets whose union is I. 

Then there exists a measurable order ~ such that (5.1) is satisfied and there is 

an A-minimal element in each A r 

PROOF. Choose x , 6 A  l for each i. Denote B2,_ 1 = {x,}, B2i = Ai/{x,} , and 

apply Corollary 5.2, for the Bj 's. Q.E.D. 

We shall use the notation A < B when x < y for each x e A and y E B. 
al  ~tl 

LEMMA 5.4. Let vr and let St c Tt c S 2 ~  T 2 c " ' = S ,  c T,, where 

Si, TiE~ for 1 <- i < n. Then there is a measurable order ~ such that 

(~~ { l=t ~ (T~\S3 } = ~=1 ~ v(T,) - v(St). 

FRCOF. Let us define 

A2k = Tk\Sk, A2k+l = S ~ + I \ T  A for l <k~_n ,  
and 

A2n+I = I \T , ,  Ao = ' ~ ,  At = Si. 

Corollary 5.3 assures the existence of a measurable order ~ such that 

Al < A2 < Aa < " '<A2,+1,  
at ~ ~ at 

and every set has an A-first element which will be called x t. Now 
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I1 

= E (~o%)([x2,. x21, l)~)  
l = l  

= ~ o ( / ( ~ , + , , a ) )  - o(tCx~,,a)) = :E (o(r,) - v(s,)). 
1 = 1  | = 1  Q.E.D. 

We restate Theorem 3.1. Let v ~ ORD. Then v is nonatomic if and only if for 

any measurable order ~i', ~o~v is nonatomic. 

REMARK. The conclusion need not hold if we do not assume v ~ ORD, even if 

we do assume that for the ~ in question, there is a a-additive measure 

~o~o satisfying (3.2)! For example let v = f ~ where ;t is Lebesgue measure, 

0 x=<3 

f(x)  = 1 x > 3, 

and let ,~ be the usual order (which is obviously measurable); it is clear that 

q~v exists and equals the measure concentrated at 3, which is not nonatomic. It 

can easily be shown that vr ORD, for denote by ~ '  the order which throws 3 

beyond [0, 1] and coincides with the usual order on [0, 1] / {3}. ~ '  is measurable 

(Lemma 5.1). If  q~'v existed, then for n > 3, (~o~'v) ([3 - 1/11, �89 + 1 /n )~ )=  1 in 

spite of  the fact that [3 - 1 In, �89 t- 1/n)sr is a decreasing sequence with a void 
intersection. 

PROOF OF THEOREM 3.1. If  V is not nonatomic, then there exists an s e I and 

a set Teqr such that v(T\{s}) # v(T). Looking at the chain J25 ,- T\ {s} c T ~  I 

and using Lemma 5.4 we know that there exists a measurable order ~ such that 

(cp • v) (T\ (T\ {s})) = v(T)-  v(T\ {s}) ~ O, that is, (~0~v) ({s}) # 0. This contradicts 

the nonatomicity of  ~o~v. 

For the opposite direction, let v in ORD be nonatomic, and ~ be a measurable 

order. ~p~v is a-additive, therefore it is sufficient to prove (c#~v)({s})=0 for all 

s e I. Let s ~ I be fixed. Henceforth greater or smaller will be with respect to the 

order ~ .  Q will denote a denumerable ~-dense subset whose existence follows 

from [1, Prop. 12.4] and Q = { - co } t.,, Q L) {oo}. 

Case (i). If there is an ~-minimal element in E(s, ~)  (remember E(s,~) 

= {x tx > s}), let it be a. Then {s} = [s,a)st and our conclusion becomes 

trivial. (This case holds when s is the greatest element in I, then a = oo.) 

Case (ii). In this case we assume that there exists no ~-maximal element in 
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l(s, ~l), and no ~-minimal element in E(s, Yl). W.l.o.g. we may assume that s r Q 

(if s e Q, change Q appropriately). Let 

J = I(s ,  u {s}, j = J u { - }, 

JIt = f] l(q, Yl) and Jo = [,3 J(q,~l). 
q~Q\J qG~nJ 

Then Ol = J = Jo. The facts that Q is ~-dense and that there is no ~-maximal 

element in I(s,~) imply that J = Jo u {s} and since there is no ~-minimal 

element in E(s,~) and s ~ Q it follows that J t  = J ,  hence Jx/Jo = (s}. 

Since the intersection and union defining dl and Jo respectively are denumer- 

able, it follows that dl and do are measurable. Furthermore since I(q, Yl) are 

linearly ordered under inclusion each finite intersection equals one of the l(q, Yi); 
hence 

oo 

where {q~} is an :~-decreasing sequence of points in Q \  J ;  that is, I(q: ,~)  
is a decreasing set sequence. Similarly 

f = l  

where {qO} is an :~-increasing sequence of points in ~ n j ;  that is, l(q ~ ~)  is an 

increasing set sequence. Obviously 

JIt\Jo= N I(qt,~) \ ~Jl(q, ~ = ~ {[(q~,'~)\l(q 0,~)}. i=1 i=l t = t  

Note that I(qi t, ~ ) I  I(q~ ~ is a decreasing sequence and t#% is a totally finite o'- 

additive measure; this yields 

(tp ~ v)(s} = (~p%) (Jr \. Jo) = lira (9%) (I(q~, ~)  \ I(q ~ 
(5.2) f" ~ 

= lim (v(I(qt, ~)) - v(I(q ~ ~t))). 

Define an order ~ *  which throws s beyond all other elements and preserves 

on ll{s}. (Lemma 5.1 assures its measurability.) Denote 

oo oo 

J* = ('] I(q, I, ~l*), Jo* = U I(q ~ ~l*). 
/ = I t  f l I t  

Since s r Q, we obtain that for i > 1 

(s} U I(qt~, ~*) = I(q~, ~),  I(q ~ ~*) = I(q ~ ~) ;  
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this yields 

{s}U j t  = j , ,  j~  = jo. 

Now, since J1 = J = Jo u {s} it follows that J * =  J *  hence 

oo 

= J1 \ Jo f"l I(q, ~, ~*) \ U l(q ~ ~*) 
1 : 1  i = 1  

oo 

= N I(q~, ~*)  \ I(q ~ ~*). 
1 = 1  

Since I(q~,~*)\I(q ~ is a decreasing sequence and r is a totally finite 

a-additive measure we obtain 

0 = ({0~'v) (J* \ J*) = lim (e~'v) {I(q~, ~*) \ I(q.~ ~*)} 
t"* oo 

= lim (v(I(q~, ~*)) - v(I(q ~ ~*))) 
i-'* oo 

= lim (v(I(q~, ~) \ {s}) - v(I(q ~ ~))) 
i"* oo 

= lim (v(I(q~, ~)) - v(I(q ~ 
f~ ~ ea 

= (~%) {~). 

We used (5.2) and the nonatomicity of v in the last two equalities. 

Case (iii). In this case we assume there is an ~-maximal elementbl in 

I(s, ~), but there is no ~-minimal element in E(s, ~). W.l.o.g. assume again that 

s ~ Q. Let 

J 

J 

= I ( s ,~ )  w (s} = I ( b , , ~ )  u {b, ,s}  

= J u { - o o }  

j ,  = f l  I (q,~).  

The same arguments used in the second case lead us to the conclusion that J1 is 

measurable and J l  = N ~ I  I(q~,~l), where qil is  an ~-d~zrea~ing sequence, tks 

there is no ~-minimal element in E(s, ~l) and s r Q it follows that J1 = J. Note 

that I(q~, ~) is a decreasing sequence of sets and q~ ~v is a totally finite, a-additive 

measure. Using the first case with respect to bl we obtain 

(5.3) (~"v) ({s}) = (e"v) ({b,, s}) = (~o~'v) (Jr) - (~ 'v)  (I(b,, ~)) 

= lira v(I(qt~, ~)) - v(I(b~, ~)). 
| ~ o 0  
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Define a measurable order ~ t  which throws s beyond all other elements. 

(Lemma 5.1 assures its measurability.) Let 

oo  

Jtlt~ = A l(q~,~l) .  
l = l  

Since I(q~, 921) u {s} = I(q:, ~)  for all i >_ 1 it follows that 

u {s} = = J .  

Now, by using (5.3) and the nonatomicity of o we obtain that 

(q~v) {s} = lim v(I(q~,, ~)) - v(I(bt,~)) 
i"* o0 

= lira v(I(a~, ~,))  - v(I(b~, ~,))  

= = { b d .  

Clearly there is no ~l-minimal element in E(bl, ~1). If there is no N~-maximal 

element in I(b~, ~1) (or equivalently in I(b~,N)), then the proof of  the second 

case yields that 

0 = (tp~'v) {b,} = (tp~v) {s}. 

If  there is such an element, we denote it by b2. We define an order ~2  which 

throws b~ beyond all other elements, and conclude analogously that  

(q~'v)({b2)) = (q~'v) ({b,}) = ( ~ v )  ({s}). 

Going on in this way we build a sequence of measurable orders ~ and a sequence 

of elements in I denoted b,, such that ~ + 1  is the measurable order which is 

obtained from ~ by throwing b~ beyond all other elements and b~+1 is the ~ -  

maximal element in I(b~, ~ )  = I(b~,s (provided it exists). We obtain 

(9 ~" +') ({b~+ t}) = (tP ~ )  ((b~}) = (tp%) ({s}). 

If  at some step there is no ~,-maximal element in I(b~, ~2~) = I(b~, ~),  the proof of  

the second case yields 0 = (~"v)({b,})  = (tp~v) ({s}). If  for some n,  b n = - oo 

we easily obtain O=(~pat"v)({b~})=(qJ%)({s}). Otherwise the procedure goes on for 

all n ~ 1. In this case define an order ~ *  
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( x,y~{b,,},,~_l and y < x, 
x < y.r 

~" t .otherwise and x < y. 

This means we reverse the order ~ on {b,}n_~l and preserve it everywhere else. 

Note that ~ *  is measurable and that {s} = J1 \ I(s, ~ )  = Jx \ l(s, ~*).  Clearly 

hence 

(~p~'v)(J , )  = lim (~pa'v) ( I (q~ ,~*) )  = lim (9~v)(I(q~,~)),  
i"* o0 I 1 ~  

({s}) = - ( , % ) ( I ( s , g * ) )  

= lira (~p~v) (I(q~, ~))  - v(I(s, ~*))  
i"* oO 

= (~P~v)(J1) - v ( I (s ,~))  

= ( J x )  - ( I ( s ,  

= 

Clearly there is no ~*-minimal element in E(s. ~*),  and no ~*-maximal element 

in I(s, ~*);  therefore the second case assures that 

0 = (opt*v) ({s}) = (r ((s}). Q.E.D. 

6. Theorems 3.2. and 3.3. 

We start this section with the proof of  Proposition 6.1 which is a slight variation 

of  Theorem 3.1. 

PROPOSITION 6.1. Let v E O R D ,  I t e M  + and v <  It. Then {s} is v-null 

�9 ,~ ((parr) ({s}) = 0 for  each measurable order ~ .  

REMARK. This proposition gives a sufficient condition that an element of ! 

is not an atom for any ~p ~v, (where ~ are measurable orders). From this point of 

view the proposition is analogous to Theorem 3.1. 

ProoF. The proof is similar to what we have done in the proof  of  Theorem 

3.1 (see Section 5); the trivial direction is the same, the other is similarly divided 

into three cases. 

Cases (i) and  (ii). The proof  is just as in Theorem 3.1, except that the last 

sentence of  Case (ii) should read: "We used (5.2) and the fact that {s} is v-null". 

Case (iii). Let q l, j be as in the proof of the third case in Theorem 3.1. We 

easily obtain that 
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(6.1) ((p~ev)({s}) = (q~aev)(Jl) - (q~91v) (I(s,~l)) 

= l i r a  v(l(q~, ~))  - v( l(s ,~)) .  
l..~ oo 

Now, choose any sequence {a, I i _>_ 1} consisting of  elements of  I such that 

#({a,}) = 0 for all i > 1, and {a,[i > 1} ~{~,11i >-- 1} = ~ ,  Clearly there exists 

such a sequence. Define an order ~ *  that puts the sequence {a,[i => 1} just 

after s and ae <. aj i,ff i < j,  that means 

x < y ~  

x ,y  ~ (ai} and x < y, 
91 

x~{ai} ,  y r  {ai} and s < y, 
91 

ye{a ,} ,x (~(a ,}  andx  < s, 
91 

x = a i ,  x = a y  and i  < j .  

Note that g *  is a measurable order. Since #({ai}) = 0 for all i we obtain that 

{al[i >= 1} is #-null, hence it is v-nuU and therefore 

{a,] i -> 1} = 

This holds in particular for t = q~ (i _>_ 1). Now note that for all i _>_ 1, v(I(s,.~l) 

= v(I(ai, ~*));  hence we obtain, using (6.1), that 

(~091v) ((s}) = lira v(I(q~, ~))  - v(I(s, ~))  
l"* oo 

= lira v(I(ql, ~*))  - lim v(I(ai, ~*)) 
l"* oO l~o0 

= (r W (a,[ i  _>_ 1}) - lim (q~91"v)(I(a,,~*)) 
l ~ o o  

= (tp91*v)(J 1 U { a , ] i >  1}) - (~91*v)(J1 U{a,  li > 1} = 0. 

Q.E.D. 

REMARK. Note that under the assumptions of Proposition 6.1, we could not 

repeat the proof of  Case (iii) in Theorem 3.1 since we could not know whether b~ 

is v-null or not. On the other hand, we could not use there the idea we use here, 

since the monotonicity of  v does not necessarily imply the existence of a denu- 

merable v-null set. 

COROLLARY 6.2. Let v ~ ORD, # e M + and v < #. Let A be a denumerable set 

in ~.  Then #(A) = 0 :~ It# ~vl(A ) = 0 for  all measurable orders ~ .  
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PROOF. #(A) = 0 implies /~((s}) = 0 for all s in A. Hence all s in A are v-null. 

Now by Proposition 6.1 we obtain (gatv)({s}) = 0 for all s in A which easily 

completes our proof. Q.E.D. 

We restate Theorem 3.2. Let v ~ ORD, # ~ M +. Then v </~,~, q~v </~ for each 

measurable order ~ .  

R~MARK. If  V r  we cannot assure v < # :~ ~av < # even if q~ av happens 

to be defined (by (3.2)). Indeed, let 2 be Leb:sgue measure an:t let v = f o 2, where 

f ( x ) =  {01 x < � 8 9  
X > � 8 9  

If  #~ is the usual order on [0, 1], then q~v is the measure concentrated at �89 now 

v < 2, but q~v < 2 does not hold. 

PROOF. For the implication ~ ,  if v </~ does not hold then there exist S, 

TE ~', S c T where #(T) =/~(S) and v(T) ~ v(S). Looking at the chain 12i = S 

T c  I and using Lemma 5.4, we know that there exists a measurable order 

such that (q~Jv)(T\S)= v ( T ) -  v(S)~ O. This contradicts the assumption that 

~0%<tL. 
For the implication :~, q)arv </~ means usual absolute continuity of  a measure 

with respect to another measure (see I2, p. 131]). 

Let H(&) be the field (not a-field) generated by the initial segments I(s; ~). If 

two finitely additive measures /~1, 21 are defined on a field F a and there exist 

countably additive extensions #z, 42, of  #~, 21 respectively to the a-field generated 

by ~1, then 21 is #l-continuous iff 42 is /~2-continuous [2, IV 9-13, p. 315]. 

q~ v and # are extensions to cg of go~v[H(~) and #1 H ( ~ )  respectively. If  

~oavlH(&) is not/~ [ H(~)-continuous then there is an e such that for each n > 1 

there exists a finite sequence 

s (")< t(") < s(2 ") . . . .  ~ < t(")k, 
such that 

Denoting 

1 /b 

kn 

w?) = w . =  U w, 
t = 1  

o0 t:o 

A. = g Wk and A =  N A., 
k = n  n = l  
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.o 1 1 

--k=. 2k 2"-t 

l o'v I(A.) 1 Cvl( ) > 
Note that {A.} is a decreasing sequence and f ') .~1 A. = A; hence by the 

total finiteness of/~ and ~p av 

/z(A) = lim/~(A.) -- 0 
tp.-} O0 

[go%l(A ) = lim I~oavl(A.) > s. 
II"* O0 

If  it happens that A is empty or denumerable, then we arrive at a contradiction 

to Corollary 6.2, which completes the proof in this case. 

If  A is non denumerable we still know that #(A) = 0, and since v </z, it follows 

that A is v-null. 

Let us define an order ~*  that throws 

A' = A / {s~ "), t~")[ 1 < i < k., n > 1} 

beyond I \ A '  and preserves ~ on A' and I I A ' .  From Lemma 5.1 it follows that 

~*  is measurable. Define 
k , ,  

w?)" = b? ), t?)5,., w:  = U w, ("'" 
i = 1  

A n =  W~* and A* = [']A*. 
k = n  n = l  

Clearly l (a ,~*)  = l(a, ~)  \A '  for each a E I \ A ' ,  in particular for a = s~ "), 

t~ ") . Therefore 

w , ( ' =  ~(~ ~ * =  ~ \A ' ,  

A* = A . \ A '  and A* = A \ A ' .  

Since A is v-null and A' c A, A' is v-null; therefore 

(r = (r ~, t~"%.) 

-- v(1(t?), ~*) - v(I(s? ), ~*)) 

= v(I(t[ "), ~)) -- v(I(s[ n), ~)) 

= (~o%)(b~ "~, t?%)  

= (#%) (w['~ 
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k n  

k~ 

Note that {A*} is a decreasing sequence and fqn% 1An = A*; hence by the total 

positivity of cp~*o 

]q~'v[(A*)= lira inf I ~o "~1 (A$)>__ lim inf[ 9~'0 ] (W*) >= lim inf l (q~a'v)(W *)[ > 8. 
/I--~ O0 n-4,  QO n..~ oo 

By the non-negativity of # and the fact that A* c A, it follows that 

0 __</~(A*) </~(A) = 0. 

Since A* is contained in {s[ ~), tl~")ll < i < k,, n > 1}, it is denumerable; hence we 

get a contradiction to Corollary 6.2. This completes the proof of Theorem 3.2. 

Q.E.D. 

We restate Theorem 3.3. Let v ~ ORD, l~ ~ M + and v </~. Then A is v-nuU 

r A is q~av-null for all measurable orders ~ .  

REMARK. If  V ~ ORD, the conclusion need not follow even if q~av happens 

to be defined (by (3.2)). Take the example in the remark following the restatement 

of Theorem 3.2; then (tp~v)((�89 = 1 but �89 is a v-null set. 

PROOF OI:THEOREM 3.3. (Aumann). For the implication ~=, if A is 

(tp~v-)null for each measurable order ~ then [tp~v] (A) = 0 for each ~ .  Assume 

there exists a B ~cg such that v (B)#  v(B\A).  Looking at the chain ~ c B \ A 

,'- B ~- I Lemma 5.4 yields the existence of a measurable order ~ such that 

(tp a~v) (B ~ A) = (9 atv) (e \ (B \ A)) = v(B) - v(B \ A) # O; 

hence (tpatv) (B h A ) #  0, which contradicts the fact that Igor]  (A) = 0. 

For the implication ~ ,  let v < # where # E M +. Let A be v-null and #~ be a 

measurable order. We shall show that I, vl (A) = 0. 

Define a measure /la(S ) = #(S\A);  then / fArM +. We shall show that 

v < #a. Let U = T be such that/~A(T\ U) = 0, which means #((T\ U) \ A) = 0. 

Since v < / t ,  it follows that (T\ U) \ A is v-null. Remembering that A is v-null, we 

obtain 
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1v(73 - v(t0l = Iv(T) - v(T\A)[ + [v(TIA) - v(UIA) l + ] v(U\A) - v(v) l 

= ) v(T\  A) - v((T\ A) \ ((T\ U) \ A)) ] = O. 

Now, v < / t  a, /~A~M + and Theorem 3.2 imply that ~p~)v < /~a for each 

measurable order &, We know that 

/ta(A ) = # ( A \ A )  = O; 

therefore (~p~v) (A) = 0. Q.E.D 

7. Theorem 3.4 

Recall that for v aORD, Ku = {q~tv I ~ is a measurable order) and 

r :  = I 

We restate Theorem 3.4. Let v ~ ORD be nonatomic. Then v e AC iff K~ (or 

equivalently K~) are weak sequentially compact (henceforth abbreviated wsc). 

REMARK. A set S is wsc in a Banach space X iff it is wsc in any fixed, closed 

linear subspace of X that contains S. One direction is immediate, the other 

follows from the Hahn-Banach theorem. Hence we do not have to mention in 

which space Kv and K~ are wsc. 

LEMMA 7.1. A set K of a.additive measures is wsc iff K '  = {1 p ll/1 ~ K} 

is wsc. 

PROOF OF THEOREM 3.4. A measure in this section means a-additive, totally finite, 

signed measure. A necessary and sufficient condition for weak sequential com- 

pactness of a set K of measures I-2, Th. IV.9.2, p. 3061 is that K is bounded and 

that there exists a positive measure 2 such that for each e > 0 there exists a 6 > 0 

such that 2(E) ~ 5 for E E ~ implies #(E) ~ e for all # ~ K. (The last condition 

will be denoted #(E)~,(r)- .o0 uniformly with respect to # in K.) Clearly the 

boundedness condition is equivalent in K and K '  (since I[. II = U I[). Noting 

that [.(E)I Z I~1(~) for all E e cg completes the proof that if K'  is wsc then 

K is wsc. 

Finally let K be wsc and 2 be the positive measure in the above condition. For 

> 0, let 5 be such that 

2(E) __< 5 =~ I#(E) I < �89 for all # ~ K. 

Since ~ is positive, we obtain that for all F ~ E, 
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Hence for all # e K, 

~(e) z ~ .  I ,  l(e) -- sup {I •(g) I + I , ( e \ r )  I} _<_ ~. r = �9 Q.E.D. 

PROOF OF THEOREM 3.4. Let Ko be wsc. Then by [2, IV.9.2, p. 306] we 

know the existence of a positive measure ;t such that (tp%) (E)--, 0 as ;t(E)---, 0 

uniformly with respect to tp~ve K,,. If we follow the proof of  that theorem we 

find that ~ is defined as the sum of  a series of  modified members of  the weak 

sequentially compact set. As v is nonatomic and v ~ ORD, each q ~  is nonatomic 

(Theorem 3.1); hence all q~%'s are nonatomic, and therefore we might demand 

that ,~ be nonatomic. So let us assume 2 e N A  +. 

We are going to show v ,~ 2. If  this assumption does not hold, then there 

exists e o > 0 such that for any given integer n > 1 there is a chain 

= s~ "~ = T p ) = . . .  = r = ~,;~= I J.~kn 

such that 

x I z(r,'"') - ~(s~",)l z ~-  
t = l  

and 

x I,,(r,,',)- o(sl")l > ~o. 
f - - I  

Clearly, by omitting some sets and changing indices, we may demand that 

Set 

An = (.J (r,~"\ sp~). 
i = l  

Since 2 is positive, 
k. 1 

;t(An) = x I~(rP )) -~(s~n)) I -<_ -~. 
/ = 1  

Lemma 5.4 yields the existence of measurable orders ~n such that 

k~t 

= X (v(TY)) -v(S~')). 
t = l  
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k~ 

= , = 

This, and the fact that 2(A.) < 1/n contradicts the uniform limit (<p ~)  (E) --) 0 

as 2(E)-~ 0 with respect to ~ogtoeKv; hence o ~ 2. 

Now let o e AC. To prove that Kv is wsc it is sufficient to show that K~ is bounded 

and that there exists a measure 2e M + ~) such that (9 v) (E)--)0 as 2(E) ---) 0 uniformly 

with respect to 9a)v e Kv. K~ is clearly bounded since tl q)ao II =< I! oil for all 

measurable orders (Proposition 4.3). To prove the uniform limit let 2 be the 

measure in NA + such that v ~ 2, let ~ > 0 be given, and let 5 > 0 correspond to 

�89 in accordance with the definition v .~ ,l. Let ~ be a measurable order and let 

H(~) be the field (not (r-field) generated by the initial segments. Clearly a set in 

n ( ~ )  is of the form U = U~= 1 Is, t3~, where 

Look at the subchain A consisting of the links {I(s,, R), l(t,, ~)}. Then 

11211^ = i :  = 2 ( u )  
1=1 

and 

I l o h =  
1=1 

J" I ~_ ,z=. (o(i(t,, ~))  - ,,q(s,, ~))) = [(~%)(v)]. 
Hence 

(7.1) 2(U)<=5~{[2{[^ <(~:#.i[v[l^ <�89189 

Now by a standard approximation theorem (one uses [3, Th. D, p. 56] on the 

measure 12 + [ <g~tv b, every measurable set can be approximated by members of 

H(~) simultaneously with respect to # and with respect to )~o~v ], Hence if 

p(S) < 5, there exists a U E H(~) such that #(U)=< 5 and [qfltv I (U~TS)< �89 
This and (7.1) imply that if p(S) < 5 then ](<P~)0 (S)] < 8. Hence 

~(s) < �89 ~ (~%) (s) ] = 

for all measurable orders ~ .  This completes the proof that K v is wsc. Q.E.D. 
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We restate Theorem 3.4'. Let v �9 ORD. Then there exists a measure 2 such 

that v ~ 2 iff Kv (or equivalently K~) is wsc. 

PROOF OF THEOREM 3.4'. We proceed exactly as in the proof of Theorem 3.4, 

replacing 2 e N A  + by ). �9 M + and omitting the part which proves the nonatomicity 

of 2. Q.E.D. 
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